
The Representation of Rhythmic Structures in µO

Stéphane Rollandin
hepta@zogotounga.net

draft - 14 November 2013

Abstract

We discuss the metaphors used in µO to represent rhythm
in its various aspects. While rhythm is an implicit part of
any MusicalCollection where it is defined by the
notes onsets, it can be made explicit in specific classes,
namely RhythmicCell and RhythmicCanvas.

Notation

In the following, the printed evaluation of a Smalltalk
expression is represented following a ► symbol. When a
graphic representation is available (a screenshot of a µO
editor in most cases), it is displayed after a ►. All code is
written in Consolas font.

1. MusicalCollection and RhythmicCell

In µO every subclass of the MusicalCollection
abstract class is an ordered set of note-like musical
elements; such a subclass is MusicalPhrase, a phrase
of MusicalNotes, which usage is discussed at length in
another paper1. In a musical collection the rhythm of
notes is fully accessible by querying for their onsets and
durations.

When working on the different rhythmic aspects of a
musical composition however, it is very convenient to
use representations of rhythm dissociated from any
motivic instanciation, in other words views of rhythm by
itself , defined purely as a structuration of time.

In µO the fundamental pulsating aspect of musical time is
reified in class RhythmicCell, while more metrically
elaborated rhythmic structures can be represented by an
instance of class RhythmicCanvas, itself composed of
one or more cells.

We can instanciate a RhythmicCell from any
MusicalCollection by sending it the message
#asRhythmicCell; what we will obtain is an object
basically representing the notes onsets and some
information about their amplitudes.

1 See "The String Representation of Musical Phrases in
µO".

'c,e!,g&.' kphrase
► 'c,ed48,gd144'
►

'c,e!,g&.' kphrase asRhythmicCell
► R(T0 T0.5 T0.75)D1.5
►

2. Beat strengths

RhythmicCell is itself a musical collection, whose
notes are the cell beats. Four different beat accents are
defined: strong, weak, strongest and void. They are
related to notes amplitude, although they can be used
arbitrarily.

A downbeat is strongest. On-beats are strong, off-beats
are weak. Void beats are void; while there is no defined
meaning for a void beat in western music, in northern
classical indian music it would be a khali2.

When obtaining a RhythmicCell from a
MusicalCollection the notes amplitudes will
translate into the corresponding beats accents:
 - an amplitude of 0 gives a void beat.
 - an amplitude below 0.5 gives a weak beat.
 - an amplitude above or equal to 0.5 gives a strong beat.
 - an amplitude of 1 gives a strongest beat.

In the string representation of a cell, a void beat is
marked as V, a weak beat as t, a strong beat as T and a
strongest beat as S:

'cv1.0,ev0.3!,gv0.5&.,cv0!!' kphrase asRhythmicCell
► R(S0 t0.5 T0.75 v1.5)D1.69

2 http://chandrakantha.com/articles/indian_music/khali.html

1

►

A beat by itself is an instance of class Tick; any musical
note can be converted into a beat:

'cv0.7' knote asTick accent
► #strong

3. RhythmicCell as a time signature

A RhythmicCell is actually the reification of the
musical concept of time signature.

A specific format allows the definition of a rhythmic cell
via an Array specification very close to the standard way
to write a time signature.

The array has the form #(b v) for a b/v signature,
where v is the beat note value and b the number of beats;
b can itself be decomposed into an array (b1 b2 ...)
having the actual b decomposed in b1+b2+... for an
additive meter where each segment starts with a strong
beat.

The first beat is always a downbeat, except if b is
negative in which case it is void; negative values are also
allowed in the segmented specification.

The note value v is an integer, 4 for a quarter note
(crotchet) , 8 for an eighth note (quaver), etc.

Sending #sig to such an array returns the corresponding
rhythmic cell.

For example the usual 4/4 signature is

#((2 2) 4) sig
► R(S0 t0.5 T1.0 t1.5)D2.0
►

where the upper 4 is written in the additive form (2 2)
instead of a plain 4 so that the third beat is made strong.

Because a time signature is a first-class musical element
in µO (a subclass of MusicalCollection), it has an
actual extension in time; consequently its tempo is well-
defined and can be changed by the regular scaling
operators. See below for more about tempo.

More surprisingly maybe, a time signature also has a
starting time. This makes sense in the rhythmic canvas
framework which is discussed below, where the starting
time specifies when a time signature is to be applied and
replace the previous one.

4. Tempo

A RhythmicCell knows about its tempo by maintaining
its own note values. Sending it #quarter or
#crotchet returns the length (in seconds) of a quarter
note for that cell.

RhythmicCell new quarter
► 0.5

The cell also knows what note value is considered to
define the beat:

 #(4 4) sig beat
► 0.5

 #(4 4) sig beatValue
► #quarter

 #(4 8) sig beat
► 0.25

 #(4 8) sig beatValue
► #eighth

The cell tempo can be changed by any operation scaling a
MusicalElement or more specifically by directly
setting the BPM (beats per minute) value:

cell := #(4 4) sig.
cell bpm
cell bpm: 200

cell beat
► 0.3

cell beatValue
► #quarter

cell quarter
► 0.3

cell bpm
► 200

2

5. RhythmicCell as a motivic rhythm

A RhythmicCell can represent the rhythm of a musical
motif. In that case each note defines a beat, each rest
define a void beat.

Sending #rhythm to a musical phrase3 returns its
rhythm:

'c,e!,r,g&&' kphrase
►

'c,e!,r,g&&' kphrase rhythm
► R(S0 T0.5 v0.75 T1.0)D2.0
►

It is then possible to give this rhythm to another phrase:

'c,e!,r,g&&' kphrase rhythm
layOut: {'a' knote. 'f' knote. 'd' knote}

►

A rhythm can be defined from scratch using an array
format similar to the one used for time signatures and
rhythmic canvases (see above). Here the array simply
contains the list of note values making up the rhythm, a
negative value marking a void beat.

#(4 8 -8 2) rhythm
► R(S0 T0.5 v0.75 T1.0)D2.0
►

3 Actually, to any MusicalCollection subclasses
instance

#(2 2) rhythm
► R(S0 T1.0)D2.0
►

Here is how a random phrase with a given rhythm could
be built:

mode := Mode harmonicMinor.
cell := #(4 8 -8 2) rhythm bpm: 140.
phrase := cell layOut: [mode noteAt: 7 atRandom].

6. RhythmicCanvas

A RhythmicCanvas is composed of one or several
RhythmicCells. At any time the effective time
signature is set by the latest cell. The time before the first
cell in the canvas is structured by that first cell.

A simple canvas based on one cell can be obtained by
sending #asCanvas to that cell.

For example

c44 := #((2 2) 4) sig.
c38 := #(3 8) sig.
canvas := c44 asCanvas | (c38 delay: 4)
►

The above example canvas, because it is simple, could be
defined directly in a format similar to time signatures:

#(2 ((2 2) 4) 1 (3 8)) sig

which reads: "take two measures of 4/4 then turn to 3/8".

If we zoom out the editor view above we can better see
how the canvas structures time:

3

Before time 4 seconds, we are in 4/4. After that time, we
are in 3/8. The fact that there are actually two adjacent
3/8 cells in the canvas is an artefact from the way
RhythmicCanvas implements the MusicalElement
protocol; this will not be discussed in this paper4.

Note that the cells making up a canvas can be at arbitrary
positions. In the above example if time 3.16 had been
choosen instead of 4 we would have had the canvas:

where the second 4/4 cell is interrupted.

The canvas cells can also have arbitrary tempos: with a
104 bpm tempo for the 3/8 cell, the canvas looks like:

6.1 Rhythmic canvas places

It is easy to get access to the ticks of a rhythmic canvas
by using "places". Let's consider the following canvas:

canvas := #(2 ((2 2) 4) 3 (3 8)) sig

It is made of two measures in 4/4 followed by three
measures in 3/8.

Places are symbolic locations within the canvas. For
example #measures is a place referencing all measures

4 In short: because it is a MusicalElement, a
rhythmic canvas must have a starting time and a
settable duration, even though it is in effect infinite in
both time directions. For one-cell canvases, starting
time and duration are taken from the cell; for many-
cells canvases, the starting time comes from the first
cell, the duration is the starting time of the last cell.

in the canvas; #downBeats is a place referencing the
first beat of all measures; #backBeats is a place
referencing all beats right after a on-beat; etc.

Many more places are defined:

canvas displayPlaces
►

Many ways to iterate over places are implemented. The
more generally useful are provided by methods
#on:mix:, #on:scaleAndMix: and #on:place:. We
detail their usages in the following.

1) canvas on: somePlace mix: aMusicalElement

copies aMusicalElement for every instance of
somePlace in canvas:

canvas on: #offBeats mix: 'c!' knote

2) canvas on: somePlace scaleAndMix: aMusicalElement

copies aMusicalElement for every instance of
somePlace in canvas: and scales the copy so that it fits
exactly within the corresponding beat.

4

canvas on: #offBeats scaleAndMix: 'c!' knote
►

Here is how one could play a major chord on each
downbeat in canvas, and a dimished chord on each up
beat:

ph1 := canvas on: #downBeats
scaleAndMix: 'c:maj' kphrase.

ph2 := canvas on: #upBeats
scaleAndMix: 'c:dim' kphrase.

ph1 | ph2

In the above 1) and 2) syntaxes, aMusicalElement can
also be a block, or a collection.

If a block, it should return a MusicalElement and it
will be evaluated for each occurence of the place:

mode := Mode harmonicMinor.
canvas on: #downBeats

scaleAndMix: [mode noteAt: 7 atRandom]
►

If a collection, its elements are used in turn to populate
the corresponding beats, until either the end of the
collection or the end time of the canvas is reached:

canvas on: #downBeats
scaleAndMix: {'c,e' kphrase .

'a' knote .
'c:min' kphrase}

3) canvas on: somePlace place: something

is used to create a BolPhrase. A BolPhrase is a
MusicalCollection of consecutive arbitrary objects,
each one wrapped into a BolWord. Originally it has been
implemented to represent actual bols, which are syllables
used by tabla drummers in Indian classical music, but it
has many more usages; basically it allows to structure
arbitrary information in a time-wise manner.

We could for example define a chord progression this
way:

canvas on: #downBeats place: #(I IV V)

Discussing further details about bol phrases in this paper
would lead us astray from its topic, so we will stop here.

6.2 Grooves

Groove subclasses implement another way to populate
specific canvas places; they define full-fledge drum
patterns.

For example HalfTimeShuffle:

HalfTimeShuffle busy on: #(4 ((2 2) 4)) sig
►

The Groove subclass GrooveOnDemand implements a
domain-specific language allowing a very compact
representation of arbitrary grooves:

groove := GrooveOnDemand with:
 #((onBeats addLouder: bass)

(downBeats erase: bass)
((beats TDb2) add: rideCymbal)
(downBeats erase: rideCymbal)
(downBeats add: hiHat)
(TDb1 addGhost: snare)
(TDb2 onMSieve: 2 2 add: bass)
(onBeats atCounts: 2 add: bass)
(TDb1 atCounts: 3 erase: snare)).

5

groove on: #(4 ((2 2) 4)) sig
►

6.3 String representation of rhythmic patterns

A common way to represent simply a rhythmic pattern is
to write it down as a string such as 'o___o_o___o_o___o_',
where a _ would stand for a rest and a o for a drum stroke.

It is easy to use this kind of notation in muO. We just
have to provide the string with a dictionary associating
each character with a musical element, and a base
rhythm. Any undefined character will be interpreted as a
rest:

'o___o_o___o_o___o_'
 interpretIn: #(4 4) sig
 with: ({$o -> #bassDrum1 asStroke} as: Dictionary)
►

'o...x.o....x.o....x.'
 interpretIn: #(4 4) sig
 with: ({$o -> #bassDrum1 asStroke .
 $x -> #snareDrum1 asStroke} as: Dictionary)

When the musical elements have to be scaled to the beats
lengths, one can use #interpretIn:scaledWith:

'ohxhohxhohx.h'
 interpretIn: #(1 (4 4) 3 (3 8)) sig
 scaledWith: ({$o -> 'ao2' knote .

 $h -> 'a' knote .
 $x -> 'c' knote} as: Dictionary)

7. Metered musical elements

Any MusicalElement can be associated with a
rhythmic canvas. The resulting object is a
CompositeMix of the element and the canvas5.

... to be continued

#withMeter:
#withMeterLayOut:

5 See "Usages of CompositeMix in µO"

6

