
CMask Seite 1

Andre Bartetzki STEAM
e-mail: abart@berlin.snafu.de Studio für elektroakustische Musik
 abart@gigant.kgw.tu-berlin.de der Hochschule für Musik Berlin, Germany
www: http.//www.kgw.tu-berlin.de/~abart phon: (+49) 30 20309 2488

CMask
a stochastic event generator for Csound

CMask is an application that produces score files for Csound, i.e. lists of notes or rather events.
Its main application is the generation of events to create a texture or granular sounds.
The program takes a parameter file as input and makes a score file that can be used immediately
with Csound.
The basic concept in CMask is the tendency mask. This is an area that is limited by 2 time
variant boundaries. These area describes a space of possible values for a score parameter, for
example amplitude, pitch, pan, duration etc. For every parameter of an event (a note statement
pfield in Csound) a random value will be selected from the range that is valid at this time (see [a],
[c], [d], [4], [5], [7]). There are also other means in CMask for the parameter generation, for
example cyclic lists, oscillators, polygons and random walks. Each parameter of an event can be
generated by a different method.
A set of notes / events generated by a set of methods lasting for a certain time span is called a
field.

CMask was written in the Metrowerks CodeWarrier environment in C++.
The program is available for Macs (68k and PPC), for SGI IRIX5.3 and for Windows95:

http://www.kgw.tu-berlin.de/~abart/CMaskMan/CMask_Download.html
ftp://ftp.kgw.tu-berlin.de/pub/cmask/

CMask is freeware.

The manual consists of a basics section, a reference and some examples.

July 1997, Andre Bartetzki

CMask Seite 2

BASICS

Parameter and Processing

Every event or note in a Csound score is described by an i statement and controlled by a number of
parameters,
called pfields p1, p2 p3 ... These pfields contain instrument number, onset time (or beat) and
duration of each event.
Moreover it is possible to define other parameters for the instruments numbered as p4, p5 etc.
These are usually frequencies or pitches, transpositions, filter values, amplitudes, attack times,
panorama positions, table numbers and so on.

One parameter in CMask corresponds to one pfield of an i statement in Csound.
The first parameter is the instrument number p1.
The second parameter, in Csound actually the onset time (or the beat,) will be regarded as the onset
difference (or the rhythm) between successive events. The sum of all preceeding onset differences up
to a certain event gives us the absolute onset time p2 of this event. The p2 parameter in CMask has
another special quality: it determines the event density, that is: how many notes will be generated in a
certain time span.
The third is the duration p3. Every subsequent parameter gets its meaning from the orchestra file.

The instructions for the parameter generation take place in a special text file called the parameter
file .
Normally all the events or grains have the same or similar properties so they can be grouped
together from a statistical point of view. These groups or rather the parameters of their events
called fields in CMask. The notion of fields is comparable to clouds or streams in other concepts
of granular synthesis.

A field has a duration that is determined by start and end time. The values of each paramter
p1,p2,p3 ... pn within this time span can be generated and processed by different means.
At first, one of the generators (see below) produces a value. This might be a random or a
periodical value or one from a list of fixed numbers. The value can be now processed or modified
with up to 3 modules (tendency mask, quantizer, accumulator) in dependence on the generator
type. (For example: a list can't be followed by a mask but an accumulator.)
With the mask module the generated values will be mapped into a time variant domain - the
tendency mask.
The quantizer adjusts its input values (the values from a mask or a generator) to a time variant
grid.
The last module, the accumulator, sums all values together. These 3 modifiers are optional.

Generators Modifiers

constant --> [accumulator] -->

list --> [accumulator] -->

segment function --> [quantizer] --> [accumulator] -->

random generator--> [quantizer] --> [accumulator] -->

probability generator --> [mask] --> [quantizer] --> [accumulator] -->

oscillator --> [mask] --> [quantizer] --> [accumulator] -->

CMask Seite 3

pn

a (...)
CONST ITEM

RND

SEG

OSC

MASK

QUANT

ACCUM

RANGE

Most of the modules can be controlled by special parameters. These control parameters can be
constant or time dependent. The variable parameters will be described by segment functions:

CMask Seite 4

Segment Functions

Segment functions (or break point functions) serves in CMask both as generators of event
parameters and as control functions for special generator and modifier parameters. Such special
parameters are, for example, the mean value of a gaussian probability distribution, the
quantization strength or a boundary of a tendency mask.
A segment functions consists, like the linseg and expseg unit generators and GEN5 / GEN7 in
Csound, of a connected sequence of segments. The segments are determined by pairs of time and
related function values.
Values between these points will be calculated by an interpolation. There is a linear or a power
function interpolation. The interpolation type is set by an exponent (see below and in the
reference section). It can also be set off - the result is a step function similar to Csounds GEN17.

interpolation with a positive exponent (= convex) interpol. with a negative exp.(= concave)

(0 0 4 10 7 5 9 8 ipl 0.5) (0 0 4 10 7 5 9 8 ipl -0.5)
(0 0 4 10 7 5 9 8 ipl 2) (0 0 4 10 7 5 9 8 ipl -2)

linear interpolation half-cosine interpolation
(0 0 4 10 7 5 9 8 ipl 0) (0 0 4 10 7 5 9 8 ipl cos)

no interpolation
(0 0 4 10 7 5 9 8 ipl off)

The value of the first defined time-value pair of a segment function is also valid before this time
(without interpolation). The same applies to the last defined value:

CMask Seite 5

Random Generators and Probability Distributions

CMask generates random numbers either by a simple random generator (range) or by means of
dynamic controllable probability functions (rnd).
The implemented distributions are: uniform, linear, triangle, exponential, bilateral and reverse
exponential, gaussian, cauchy, beta and weibull. For a detailed description of these probabilities
see in [a], [1], [2], [3].

Many of these distributions are controllable by one or two parameters. They can be set as constant
or as variable by a segment function. A gaussian distribution, for example, is determined by a
mean value and a standard deviation. If we vary the standard deviation the shape of the
distribution (the histogramm) will be changed.
If we have the segment function pairs 0 1 and 10 3 as control values for an exponential
distribution, the result is a rising exponent (lambda) from 1.0 at 0 seconds to 3.0 at 10 seconds,
that is, the generator prefers more lower values at time 10.0.
If we have a cauchy distribution and control its mean value by 0 0.5 and 10 0.8, we get a mean
value that changes from 50% to 80% of the range {0...1}.

The parameters for every probability function and their ranges are described in the reference
section of this manual.

The generated random numbers are limited to the range {0...1} (even if they might be lower or
higher in theory, like gaussian, cauchy, exponential and weibull). This range can be stretched or
compressed by a subsequent tendency mask.

uniform distribution linear distribution
rnd uni rnd lin 1 (lin -1)

0.0 0.5 1.0

0.0 0.5 1.0

triangle distribution exponential distribution
rnd tri rnd exp 1 (exp 0.7, exp 2)

0.0 0.5 1.0 0.0 0.5 1.0

CMask Seite 6

reverse exponential distribution bilateral exponential distribution
rnd rexp 1 (rexp 0.7, rexp 2) rnd bexp 1 (bexp 0.7, bexp 2)

0.0 0.5 1.0 0.0 0.5 1.0

gaussian distribution cauchy distribution
rnd gauss .5 .2 rnd cauchy .5 .2
(gauss .5 .1, gauss .2 .2) (cauchy .5 .15, cauchy .2 .2)

0.0 0.5 1.0 0.0 0.5 1.0

beta distribution weibull distribution
rnd beta .2 .2 rnd wei .5 3
(beta .6 .6, beta .1 .3) (wei .5 1, wei .5 .3)

0.0 0.5 1.0 0.0 0.5 1.0

CMask Seite 7

Oscillators

There are not only random generators in CMask. It is also possible to use the following periodic
functions as parameter generators: sine, cosine, saw tooth up and down, square, triangle and
periodic power functions.
Every function has a frequency value measured in cps, constant or time variant, and a constant
phase (normalized, between 0 and 1).
These functions produce values in the range {0...1}, like the random generators, i.e. their
amplitudes keep constant.
A subsequent mask can serve as an amplifier to achieve other ranges.

sine function cosine function
osc sin 1 osc cos 1

0.0 0.5 1.0 2.0

1.0

0.0

0.0 0.5 1.0 2.0

1.0

0.0

saw up function saw down function
osc sawup 1 osc sawdown 1

0.0 0.5 1.0 2.0

1.0

0.0

0.0 0.5 1.0 2.0

1.0

0.0

power up function power down function
osc powup 1 0 1 osc powdown 1
(powup 1 0 2, powup 1 0 -1) (powdown 1 0 2,powdown 1 0 -1)

0.0 0.5 1.0 2.0

1.0

0.0

0.0 0.5 1.0 2.0

1.0

0.0

CMask Seite 8

square function triangle function
osc square 1 osc triangle 1

0.0 0.5 1.0 2.0

1.0

0.0

0.0 0.5 1.0 2.0

1.0

0.0

Lists

Instead of random or oscillating generators one can use simple lists.
A list contains a set of numbers, for example (5 1 8 10.2) or (1.5 0.01 0.01 1234) etc.
The elements of the list can be selected by different methods: in a forward loop (cycle), in a
forward and backward loop, like a pendulum or a palindrome (swing), as random permutations,
like a stack of cards (heap) and by chance (random). There is in contrast to segment functions
no time dependence at all - the elements will be read one by one corresponding to the mode.
The example shows the four modes with the same list:

item cycle (1 2 3 4) -> 1 2 3 4 1 2 3 4 1 2 3 4
item swing (1 2 3 4) -> 1 2 3 4 3 2 1 2 3 4 3 2
item heap (1 2 3 4) -> 3 2 4 1 2 3 1 4 4 3 1 2
item random (1 2 3 4) -> 2 4 2 1 1 3 2 3 4 1 2 2

Tendency Masks

A mask is an area that is limited by two (time variant) boundaries. The numbers produced by a
preceding random generator (rnd) or oscillator (osc) will be mapped into this range.
Upper and lower mask limit may be constant or a segment function.

p4 rnd uni
mask (2 100 6 70 11 240) (2 240 6 310 11 240)

100

240

310

240

70

240

2 6 11

This example describes a uniform random generator for p4 (a frequency ?) and a tendency mask.
The masks range at 2 seconds is {100...240}, therefore the random numbers are distributed
between 100 and 240. The range expands to {70...310} at 6 seconds and shrinks to a single value
of 240 at 11 seconds.

CMask Seite 9

The following forms are special border cases of the mask principle:

1. A mask with a constant lower and a constant upper boundary ist actually a normal (time
invariant) range:

Therefore, these two parameter descriptions are equivalent:

p4 rnd uni
mask 10 20

or

p4 range 10 20

2. A mask with constant and identical boundaries describes a constant value:

Therefore, these two parameter descriptions are equivalent:

p4 rnd uni
mask 10 10

or

p4 const 10

3. A mask with time variant but identical boundaries describes a normal segment function - there
is no range for random or oscillating numbers:

Therefore, these two parameter descriptions are equivalent:

p4 rnd uni
mask (3 10 5 20 7 10) (3 10 5 20 7 10)

or

p4 seg (3 10 5 20 7 10)

CMask Seite 10

Because of the free choice of an interpolation exponent for segment functions there is a large
variety of possible mask shapes constructed by the same set of break points:

CMask Seite 11

Mapping

The mathematical transformation (mapping) of the random or periodic values into the mask
follows a linear, a power oder a root function.
A linear mapping, probably normal for many CMask applications, expands oder compresses the
values to the current mask range in a proportional (linear) way. For example, if the random values
0.0, 0.1, 0.5 and 0.8 will be linear transformed in a range between 2 and 6, the result will be 2.0,
2.4, 4.0 and 5.2. With a range of -10 ... +10 we will have -10.0, -8.0, 0.0, 6.0.
A power function changes the original proportion. A square function transforms the valuea 0.0,
0.1, 0.5 and 0.8 to 0.0, 0.01, 0.25 and 0.64. A mapping into the range [2,6] results in 2.0, 2.04,
3.0 and 4.56.
A square root function, for example, transforms the values to 0.0, 0.316..., 0.707... and 0.894....
In the range [2,6] this is 2.0, 3.264..., 4.828... und 5.577....
The mapping function in CMask is

f (x) = x2n

x is the input value and n the mapping exponent

n=0 gives a linear function.
n>0 gives a power function, n=1 gives the square function.
n<0 gives a root function, n=-1 gives the square root function.

For many synthesis parameters the linear transformation would be the right choice.
But if we want to generate uniform distributed frequencies for use in audio oscillators between
100 and 800 Hz for example, they will distributed equally in that range, but we will hear more
higher pitches. In this example the half of all frequencies fall in the range 450...800 Hz, this is
about 1 octave. The other half (100...450) comprises more than 2 octaves. Therefore pitches from
the lowest octave will be rare in relation to the pitches from the highest octave. To solve the
problem of the logarithmic frequency-pitch-relation one can either use cent or oct values
instead of frequencies or use as approximation an exponential distribution instead of uniform. The
third way is a square function as mapping transformation.
We have a similar case with onset differences and durations. Uniform distributed time intervals or
durations would be perceived as a preference of larger intervals and durations.

CMask Seite 12

Quantization

After generation and mask mapping it is possible to quantize the numbers. There are 3 parameters for
quantization:
interval, strength and offset .

The quantization interval is the distance between two neighbouring points in the value range. All these
points form an equidistant grid. These points attract surrounding random values like magnets.
(Compare with metrical quantize in a MIDI sequencer.)

An interval of 30, for example, builds a grid:
 -120 -90 -60 -30 0 30 60 90 120 150 180

The interval can also be time variant. The segment function (0 30 5 30 10 45), for
example, describes a grid that is constant before 30 seconds and increasing after this time:

quant (0 30 5 30 10 45) 1 0

The quantization offset, also controllable by a segment function, is a shift of the grid.

An offset value of 10 and an interval of 30 results in the grid:
 -110 -80 -50 -20 10 40 70 100 130 160 190....

This is an example for a dynamic offset:

quant 40 1 (3 0 6 20)

The quantization strength, a value or a segment function in the range {0...1}, i.e. 0 ... 100%, specify
how the grid points attract values between them.
A strength value of 1 gives a total quantization - every random value are now precise on the grid. A
strength of 0.5 (50%) means, that all random values are shifted to the half distance to the next grid
point. (Compare with "Iterative Quantize" in a sequencer.)

An example for an increasing strength:

quant 40 (0 0 10 1) 0

CMask Seite 13

The example below shows a tendency mask combined with a quantization with dynamic interval,
offset and strength (grey areas in the mask are possible areas for random or periodic values):

interval

offset

strength

Quantization is useful for the construction of regular meters in rhythm oder harmonic frequency grids.

CMask Seite 14

Accumulation

An accumulator adds all its input values and an initial value together.
For example, the numbers 10 2 34 5 and an inital value of 0 results in 10 12 46 51. That is, one
can look upon the input values as relative values or intervals. The numbers after accumulation are
absolute values.
If we use an accumulator in connection with a random generator, we can call the result a random
walk. Depending on the input values, the sum may rise to a very large number. In order to limit to
sum to a certain range it is possible to define lower and upper boundaries similar to a mask. The
specification of the accumulation mode prescribes the behavior near to a boundary. The limit -
mode cuts values higher than the upper limit and vice versa. The mirror - mode reflects the
amount that crosses the limit back into the allowed range. The wrap - mode considers both limits
the same, so that a value that is too high comes out above the lower boundary and vice versa.

limit mirror wrap

CMask Seite 15

An example

The lines below describe a field that contains 6 parameter in the valid CMask syntax:

{
f1 0 8193 10 1 ;text in braces take place

;in the score file unchanged
i3 0 20
}

f 0 10 ;a field from 0 to 10 seconds

p1 const 1 ;instrument 1

p2 range .01 .2 prec 3 ;onsets between 10 and 200 ms
;precision: 3 digits after
;the decimal point

p3 rnd exp 1 ;durations between 0.5
;and 1 seconds

mask .5 1 ;and exponential distribution
prec 2

p4 item heap (120 125 400 355) ;permutations of 4 values

p5 rnd uni ;uniform distributed numbers
mask (3 100 8 50) 200 map 1 ;between 100 and 200 at first and

;between 50 and 200 in the end

p6 osc cos (0 .5 10 5) ;faster and faster oscillating
;values in the range {0...1}

CMask Seite 16

Working with CMask

As usual one should design the instruments and the orchestra file at first. If the meaning of the
pfields p4-pn is fixed one can write generators, masks etc. for all the pfields in a parameter file.
For a better readability it is advisable to insert comments (after a semicolon).
The file format of the parameter file have to be plain ASCII text, similar to the .orc and .sco
files.
Suitable text editors for Csound and CMask on Macs are BBedit or Alpha.

If the score file should also contain other note lists or function table statements one can write
these in braces {...} as the first lines of the parameter file. This part of the parameter file will be
taken unchanged into the score file. In this way one gets a complete score file for Csound that
don't have to be further edited.

Each parameter can have its own precision. The default value for the decimal places after the
point is 5. In order to get integer numbers, for example, the precision have to be 0.

CMask on the Macintosh:

After launching CMask a file dialog box appears to select the parameter file. Then one have to
set the path and type the name for the new score file. The default for the file name is the name of
the parameter file with appended '.sco'.
If an errors occurs, CMask stops and prints a message. One have to quit (command-Q) the
program now. After debugging one can restart CMask. If the text was OK, CMask writes the
score file to the disk.

CMask on SGI:

CMask expects at least on argument: the name of the parameter file. The optional second
argument may contain the name for the new score file. If no score file name is given, CMask
appends '.sco' to the paramater file name as the new score file name. If an errors occurs, CMask
prints a message and stops. After debugging one can restart CMask. If the text was OK, CMask
writes the score file to the disk.

CMask on the PC:

There is no GUI for CMask, so you have to run it in a MS-DOS-Window.
CMask expects at least on argument: the name of the parameter file. A special file type extension
is not required. The optional second argument may contain the name for the new score file. If no
score file name is given, CMask appends '.sco' to the paramater file name as the new score file
name. If an errors occurs, CMask prints a message and stops. After debugging one can restart
CMask. If the text was OK, CMask writes the score file to the disk.

CMask Seite 17

REFERENCE

Symbols and numbers in a parameter file have to be limited with space, tab or return.
The values of a modul (generator, mask etc.) can be distributed over several lines.
Several moduls can also be written together in one single line.

Symbols (f, rnd, mask, accum ...) can be written in upper case or lower case letters.

Prescribed text

{ <text> }

The text in braces may contain function table statements, note lists and other score statements
inclusive comments, which should be copied unchanged into the score file . This prescribed text
must be written before any field desriptions.

Example:
{
f1 0 8193 10 1
f2 0 1024 8 0 512 1 512 0
; tables with sine wave and envelope
}

Comment

; <text>

Comments can be written elsewhere into the parameter file .
They begin with a semicolon ; and extend to the end of the line.

CMask Seite 18

Segment function (bpf)

(<t1 v1> <t2 v2> <t3 v3> <..> [ipl <<val> | cos | off>])

[<vstart> <vend> [ipl <<val> | cos | off>]]

Almost every module in CMask can controlled by a constant or by time dependend values. The
description of variable values is done by segment functions (also known as break-point functions
or polygonals). Such a function have to be written within parenthesis as a sequence of time-value
pairs or points (<tn vn>). The function value of the first point is also valid before its time. The
same principle applies to the last point.
Values between the given points will be calculated by linear or power function interpolation. The
optional interpolation exponent follows the keyword ipl. The default for interpolation is 0, that
is linear. If ipl is followed by off, the result a step function instead of interpolation.

interpolation exponent result

0 linear (similar to linseg in Csound)
>0 slowly rising, fast decaying (convex, similar to expseg in Csound)
<0 fast rising. slowly decaying (concave)
cos half-cosine interpolation (smooth curve)
off no interpolation (steps, similar to GEN17 in Csound)

There is a simplified way to write functions that consists of only one segment lasting from start to
end of the field. A simple segment function have brackets and only two numbers - the start and
the end value.

Examples:
(0 3 5 0 8 -1) ;3 points {0,3},{5,0} and {8,-1} with linear interp.
(0 3 5 0 ipl -1) ;2 points {0,3},{5,0} and {8,-1} with concave interp.
[10 50 ipl 2.3] ;2 points {start,10},{end,50} with strong convex int.
[10 50 ipl cos] ;2 points {start,10},{end,50} with smooth interpolation

CMask Seite 19

Field

F <start time> <end time>
<parameter1>
<parameter2>
...

A parameter file consists of one or any number of fields. Fields are comparable to clouds or
streams in granular synthesis systems.
A field describes at least the first 3 parameter of any Csound instrument: the instrument number,
the onset time (or beat) and the duration. Depending on the structure of the instrument there can
be other parameters.
Every field must have a header that is marked by the letter F. Then follow the start and the end
time of the field in seconds. After the header begins the block with parameter descriptions for
p1, p2, p3 etc. The field description ends after the last given parameter px or with a
declaration of a next field.
Fields don't have to be declared in chronological order.

Parameter

pn <generator>
[<mask>]
[<quantizer>]
[<accumulator>]
[prec <val>]

Each CMask parameter pn will be described with one or more moduls from the processing
scheme (see above).
n corresponds to the numbering in Csound score files p1, p2, p3 etc.
A CMask parameter have to contain at least one of the generators (const, item, seg,
range, rnd, osc).
Any subsequent modifying moduls (mask, quant, accum) are optional. In dependence on
the choosen generator there only certain modifying moduls allowed.

Precision

prec <val>

The numbers computed by the last modul of every parameter will be rounded normally to a
precision of 5, that is 5 decimal places after the point. This precision in changeable with the
optional prec - value (0...5).
<val> defines the desired number of decimal places for the output, 0 results in integers, negative
values are not allowed.

CMask Seite 20

Generators

A generator produces numbers, which may be further processed by a mask, a quantizer or an
accumulator.
Currently there are the follwing generators implemented: const, seg, range, rnd, osc
and item.

Constant

const <val>

const generates a constant value val.
Possible processing with accum.

Example:
p1 const 2 ;constant instrument number

List

item <mode> <list>

item reads one number at a time from list dependend on the mode.

access mode example

cyclic cycle (1 2 3 4) -> 1 2 3 4 1 2 3 4 1 2 3 4

swinging swing (1 2 3 4) -> 1 2 3 4 3 2 1 2 3 4 3 2

permutations heap (1 2 3 4) -> 3 2 1 4 3 1 4 2 2 3 4 1

random random (1 2 3 4) -> 4 2 3 3 2 1 3 4 1 2 1 4

Possible processing with accum.

Example:
p4 item heap (400 410 30.3 5000 1222) ;5 different values

CMask Seite 21

Segment function

seg <bpf>

seg reads function values from the segment function given in bpf.
Possible processing with quant and accum.

Example:
p3 seg (0 1 4 .3 6 1)

Random number generator

range <val1> <val2>

range generates uniform distributed random numbers in the range {val1,val2}.
Possible processing with quant and accum.

Example:
p2 range .1 .5 ;rhythms between 0.1 and 0.5 seconds

CMask Seite 22

Probability distribution generator

rnd <func> [<val1 | bpf1> [<val2 | bpf2>]]

rnd produces random numbers according to a probability distribution func. Some of the
distributions have optional parameters to describe their shape precisely. The values of these
optional parameters may be constant (val) or time variant (bpf).

Probability distributions:

distribution name optional parameters default remarks

uniform uni -

linear lin <val> 1.0 ;>0 : decrease <0 : increase

linear, increasing rlin -

triangle tri -

exponential, decreas. exp <val | bpf> 1.0 ; only values >0

exponential, increas. rexp <val | bpf> 1.0 ; only values >0

exponent., bilateral bexp <val | bpf> 1.0 ; only values >0

gaussian gauss <val | bpf> <val | bpf> 0.1 0.5 ; standard deviation
; and mean {0...1}

cauchy cauchy <val | bpf> <val | bpf> 0.1 0.5 ; spread and mean {0...1}

beta beta <val | bpf> <val | bpf> 0.1 0.1 ; a and b {0...1}

weibull wei <val | bpf> <val | bpf> 0.5 2.0 ; s {0...1} and t {>0}

Possible processing with mask, quant and accum.

Example:
p4 rnd gauss (0 .1 10 .6) .5

CMask Seite 23

Oscillator

osc <func> [<freq | bpf> [<phs> [<exp>]]]

osc generates numbers according to a periodic function func in dependence on a constant or
variable frequency and an optional phase.

Periodic functions:

function name parameter remark

sine sin <val | bpf> [<val>] ;frequenz in cps, phase {0...1}

cosine cos <val | bpf> [<val>]

saw, increasing sawup <val | bpf> [<val>]

saw, decreasing sawdown <val | bpf> [<val>]

square square <val | bpf> [<val>]

triangle triangle <val | bpf> [<val>]

power function, powup <val | bpf> [<val>] [<val>] ;frequenz, phase, exponent
 increasing
power function, powdown <val | bpf> [<val>] [<val>] ;frequenz, phase, exponent
 decreasing

Possible processing with mask, quant and accum.

Example:
p4 osc sin (0 2 3 .5 ipl 1) ;from 2 to 0.5 Hz falling frequency

CMask Seite 24

Modifier

A modifier processes the numbers which was generated by a preceeding generator or another
modifier.
All modifying moduls are optional, but there is only one possible order (see the processing
scheme above).
The implemented modifiers are: mask, quant and accum.

Tendency mask

mask <low | bpf> <high | bpf> [map <exp>]

The values generated by rnd or osc can can be mapped onto a time dependend range - the
tendendency mask.
Both low and high boundaries may be constant or time variant (bpf).
The mapping process itself depends on the optional map-exponent: Values which was produced
by rnd or osc are always in the range {0...1}. Within a mask they will now transformed by a
(nonlinear) function:
y = x ^(2^exponent).
The default exponent is 0, this results in a linear transformation.
Positive exponents result in a power function. For example: an exponent 1 makes the squares of
the input numbers, 0.5 will be 0.25, 0.3 will be 0.09, that is, all values gets smaller (except 0 and
1).
Negative exponents result in a root function. For example: an exponent -1 makes the square root
of the input numbers, 0.5 will be 0.79 0.3 will be 0.669, that is, all values gets larger (except 0
and 1).

Example:
p4 rnd uni
mask 50 (2 100 10 200) ;lower limit 50, upper limit from 100 to 200

Quantizer

quant <q | bpf> [<s | bpf> [<o | bpf>]]

A quantizer attracts the results of the preceeding modul onto a quantization grid q. The optional
strength s {0...1} (default 1) specifies to which extent the grid takes effect (1 is total
quantization, 0 is no quantization at all). The optional offset o (default 0) shifts the whole grid by
the given amount. Each of the 3 parameters may be constant or time variant (bpf).

Example:
p4 range 100 200
quant 20 [0 1] ; dynam. quantization to a grid ->
100,120,140,160,180,200

CMask Seite 25

Accumulator

accum <mode> [<low | bpf> <high | bpf>] [init <exp>]

The accumulator continuously sums all its input values to an inital value init. The inital value
is optional and has a default value of 0. In order to restrict the sum to a certain range it is possible
to define lower and upper limits similar to tendency masks.
The accumulators behavior near by the limits can be determined by one of three limiting modes.

method mode parameter

without any limiting on

with limiting limit <low | bpf> <high | bpf>

with limiting and reflection mirror <low | bpf> <high | bpf>

with cyclic closed limits wrap <low | bpf> <high | bpf>

Example:
p4 range -10 10
akkum mirror 100 300 init 200

CMask Seite 26

REFERENCES

[1] Ames, Ch. 1991. "A Catalog of Statistical Distributions..." Leonardo Music Journal 1(1)
[2] Dodge, Ch. / Jerse, Th. A. 1985. Computer Music Collier Macmillan, London
[3] Lorrain, D. 1980. "A Panoply of Stochastic 'Cannons'." Computer Music Journal 4(1)
[4] Roads, C. 1991. "Asynchronous Granular Synthesis." in Representations of Musical Signals,
MIT Press
[5] Roads, C. 1985. "Granular Synthesis of Sounds." in Foundations of Computer Music, MIT
Press
[6] Truax, B. 1988. "Real-time Granular Synthesis with a Digital Sound Processor." Computer
Music Journal 12(2)
[7] Wishart, T. 1994. Audible Design Orpheus the Pantomime
[8] Xenakis, I. 1992. Formalized Music Pendragon Press

SOFTWARE

[a] Castine, P. Litter Package (Externals for MAX)
[b] Koenig, G.M. Project I, Project II
[c] Truax, B. POD programs
[d] Xenakis, I. Stochastic Music Program

CMask Seite 27

EXAMPLES

A simple FM-instrument:

;; bells.orc

sr = 44100
kr = 4410
nchnls = 2

instr 1
;p2 onset
;p3 duration
;p4 base frequency
;p5 fm index
;p6 pan (L=0, R=1)

kenv expon 1,p3,0.01
kindx expon p5,p3,.4
a1 foscil kenv*10000,p4,1,1.143,kindx,1

outs a1*(1-p6),a1*p6

endin
;; --------------------

CMask Seite 28

A dynamic texture made of FM-bells:

;; bells parameter file
{
f1 0 8193 10 1 ;sine wave for foscil
}

f 0 20 ;field duration: 20 secs

p1 const 1

p2 ;decreasing density
rnd uni ;from .03 - .08 sec

;to .5 - 1 sec
mask [.03 .5 ipl 3] [.08 1 ipl 3] map 1
prec 2

p3 ;increasing duration
rnd uni
mask [.2 3 ipl 1] [.4 5 ipl 1]
prec 2

p4 ;narrowing frequency grid
rnd uni
mask [3000 90 ipl 1] [5000 150 ipl 1] map 1
quant [400 50] .95
prec 2

p5 ;FM index gets higher from
2-4 to 4-7
rnd uni
mask [2 4] [4 7]
prec 2

p6 range 0 1 ;panorama position
;uniform distributed

prec 2 ;between left and right

;; --------------------

CMask Seite 29

The same .orc file but lists and several fields:

;; bells parameter file
{
f1 0 8193 10 1 ;sine wave for foscil
}

f 0 10 ;field 1

p1 const 1

p2 range .1 .3 prec 2 ;density between 100
;and 300 ms

p3 range .7 1.2 prec 2

p4 item heap (300 320 450 430 190) ;5 frequencies in
;random permutations

p5 const 3 ;FM index = 3

p6 range 0 1 prec 2

f 2 8 ;field 2

p1 const 1

p2 seg (2 .01 5 .5 8 .01 ipl 1) prec 3 ;another density structure

p3 const .2

p4 item random (2000 2020 2400 2450 5300 2310 2350)

p5 seg (2 3 5 7 8 3 ipl 1) prec 1 ;FM index synchronous
;to density p2

p6 range 0 .5 prec 2 ;panorama only in the
;left half

f 5 15 ;field 3

p1 const 1

p2 item swing (.3 .05 .2 .1 1) ;a rhythm

p3 item swing (.3 .05 .2 .1 1) ;no rest, no overlap

p4 range 100 200 prec 1

p5 seg [1 5] ;increasing FM index

p6 range .3 .7 prec 2 ;only in the middle

;; --------------------

CMask Seite 30

A version with random walks.
Note that different runs of CMask result partly in very different score files!

;; bells parameter file
{
f1 0 8193 10 1 ;sine wave for foscil
}

f 0 20 ;field 1

p1 const 1

p2 range -.2 .2 ;density difference
;-200 to +200 ms

accum limit .01 1 ;absolut values between
;.01 to 1 sec

p3 range -.1 .1
accum mirror .1 1.5 init .5

p4 range -50 100 ;tendency to higher
;frequencies

accum wrap 200 2000 init 300 ;but wrapped at (upper)
;boundary

p5 const 3 ;FM index = 3

p6 range 0 1 prec 2

For more examples (timestretching and others) look in the folder "CMask examples".

